Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ther Umsch ; 80(6): 251-257, 2023 Aug.
Artigo em Alemão | MEDLINE | ID: mdl-37855528

RESUMO

INTRODUCTION: Dyspnea is one of the most common symptoms in patients with lung diseases. The term "dyspnea" refers to the subjective sensation of uncomfortable breathing, which is experienced and described very differently between individuals. Because of this, diagnosis can be very challenging and similar to pain, no true objective measurement parameters of dyspnea exist. A detailed symptom history and clinical examination are critical in establishing the diagnosis, but the severity of pulmonary functional impairment does not always correlate with the clinical picture. The diagnosis of lung diseases is led by pulmonary function tests and imaging techniques, which measure the response to therapy and assess the prognostic course of the disease. The purpose of this article is to review the causes of pulmonary dyspnea, present a guide to diagnostic work-up, and introduce common differential diagnoses.


Assuntos
Dispneia , Pneumopatias , Humanos , Dispneia/diagnóstico , Dispneia/etiologia , Dispneia/terapia , Pulmão/diagnóstico por imagem , Pneumopatias/diagnóstico
2.
J Clin Med ; 12(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36902567

RESUMO

Pulmonary vascular diseases (PVDs), defined as arterial or chronic thromboembolic pulmonary hypertension, are associated with autonomic cardiovascular dysregulation. Resting heart rate variability (HRV) is commonly used to assess autonomic function. Hypoxia is associated with sympathetic overactivation and patients with PVD might be particularly vulnerable to hypoxia-induced autonomic dysregulation. In a randomised crossover trial, 17 stable patients with PVD (resting PaO2 ≥ 7.3 kPa) were exposed to ambient air (FiO2 = 21%) and normobaric hypoxia (FiO2 = 15%) in random order. Indices of resting HRV were derived from two nonoverlapping 5-10-min three-lead electrocardiography segments. We found a significant increase in all time- and frequency-domain HRV measures in response to normobaric hypoxia. There was a significant increase in root mean squared sum difference of RR intervals (RMSSD; 33.49 (27.14) vs. 20.76 (25.19) ms; p < 0.01) and RR50 count divided by the total number of all RR intervals (pRR50; 2.75 (7.81) vs. 2.24 (3.39) ms; p = 0.03) values in normobaric hypoxia compared to ambient air. Both high-frequency (HF; 431.40 (661.56) vs. 183.70 (251.25) ms2; p < 0.01) and low-frequency (LF; 558.60 (746.10) vs. 203.90 (425.63) ms2; p = 0.02) values were significantly higher in normobaric hypoxia compared to normoxia. These results suggest a parasympathetic dominance during acute exposure to normobaric hypoxia in PVD.

3.
Sleep ; 46(4)2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-36356042

RESUMO

STUDY OBJECTIVES: To assess altitude-induced sleep and nocturnal breathing disturbances in healthy lowlanders 40 y of age or older and the effects of preventive acetazolamide treatment. METHODS: Clinical examinations and polysomnography were performed at 760 m and in the first night after ascent to 3100 m in a subsample of participants of a larger trial evaluating altitude illness. Participants were randomized 1:1 to treatment with acetazolamide (375 mg/day) or placebo, starting 24 h before and while staying at 3100 m. The main outcomes were indices of sleep structure, oxygenation, and apnea/hypopnea index (AHI). RESULTS: Per protocol analysis included 86 participants (mean ± SE 53 ± 7 y old, 66% female). In 43 individuals randomized to placebo, mean nocturnal pulse oximetry (SpO2) was 94.0 ± 0.4% at 760 m and 86.7 ± 0.4% at 3100 m, with mean change (95%CI) -7.3% (-8.0 to -6.5); oxygen desaturation index (ODI) was 5.0 ± 2.3 at 760 m and 29.2 ± 2.3 at 3100 m, change 24.2/h (18.8 to 24.5); AHI was 11.3 ± 2.4/h at 760 m and 23.5 ± 2.4/h at 3100 m, change 12.2/h (7.3 to 17.0). In 43 individuals randomized to acetazolamide, altitude-induced changes were mitigated. Mean differences (Δ, 95%CI) in altitude-induced changes were: ΔSpO2 2.3% (1.3 to 3.4), ΔODI -15.0/h (-22.6 to -7.4), ΔAHI -11.4/h (-18.3 to -4.6). Total sleep time, sleep efficiency, and N3-sleep fraction decreased with an ascent to 3100 m under placebo by 40 min (17 to 60), 5% (2 to 8), and 6% (2 to 11), respectively. Acetazolamide did not significantly change these outcomes. CONCLUSIONS: During a night at 3100 m, healthy lowlanders aged 40 y or older revealed hypoxemia, sleep apnea, and disturbed sleep. Preventive acetazolamide treatment improved oxygenation and nocturnal breathing but had no effect on sleep duration and structure. TRIAL REGISTRATION: The trial is registered at Clinical Trials, https://clinicaltrials.gov, NCT03561675.


Assuntos
Acetazolamida , Altitude , Humanos , Feminino , Masculino , Acetazolamida/uso terapêutico , Sono , Respiração
4.
J Clin Med ; 11(10)2022 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35628896

RESUMO

Prediction of adverse health effects at altitude or during air travel is relevant, particularly in pre-existing cardiopulmonary disease such as pulmonary arterial or chronic thromboembolic pulmonary hypertension (PAH/CTEPH, PH). A total of 21 stable PH-patients (64 ± 15 y, 10 female, 12/9 PAH/CTEPH) were examined by pulse oximetry, arterial blood gas analysis and echocardiography during exposure to normobaric hypoxia (NH) (FiO2 15% ≈ 2500 m simulated altitude, data partly published) at low altitude and, on a separate day, at hypobaric hypoxia (HH, 2500 m) within 20−30 min after arrival. We compared changes in blood oxygenation and estimated pulmonary artery pressure in lowlanders with PH during high altitude simulation testing (HAST, NH) with changes in response to HH. During NH, 4/21 desaturated to SpO2 < 85% corresponding to a positive HAST according to BTS-recommendations and 12 qualified for oxygen at altitude according to low SpO2 < 92% at baseline. At HH, 3/21 received oxygen due to safety criteria (SpO2 < 80% for >30 min), of which two were HAST-negative. During HH vs. NH, patients had a (mean ± SE) significantly lower PaCO2 4.4 ± 0.1 vs. 4.9 ± 0.1 kPa, mean difference (95% CI) −0.5 kPa (−0.7 to −0.3), PaO2 6.7 ± 0.2 vs. 8.1 ± 0.2 kPa, −1.3 kPa (−1.9 to −0.8) and higher tricuspid regurgitation pressure gradient 55 ± 4 vs. 45 ± 4 mmHg, 10 mmHg (3 to 17), all p < 0.05. No serious adverse events occurred. In patients with PH, short-term exposure to altitude of 2500 m induced more pronounced hypoxemia, hypocapnia and pulmonary hemodynamic changes compared to NH during HAST despite similar exposure times and PiO2. Therefore, the use of HAST to predict physiological changes at altitude remains questionable. (ClinicalTrials.gov: NCT03592927 and NCT03637153).

5.
ERJ Open Res ; 7(4)2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34651040

RESUMO

QUESTION ADDRESSED BY THE STUDY: To investigate exercise performance and hypoxia-related health effects in patients with pulmonary hypertension (PH) during a high-altitude sojourn. PATIENTS AND METHODS: In a randomised crossover trial in stable (same therapy for >4 weeks) patients with pulmonary arterial hypertension (PAH) or chronic thromboembolic pulmonary hypertension (CTEPH) with resting arterial oxygen tension (P aO2 ) ≥7.3 kPa, we compared symptom-limited constant work-rate exercise test (CWRET) cycling time during a day-trip to 2500 m versus 470 m. Further outcomes were symptoms, oxygenation and echocardiography. For safety, patients with sustained hypoxaemia at altitude (peripheral oxygen saturation <80% for >30 min or <75% for >15 min) received oxygen therapy. RESULTS: 28 PAH/CTEPH patients (n=15/n=13); 13 females; mean±sd age 63±15 years were included. After >3 h at 2500 m versus 470 m, CWRET-time was reduced to 17±11 versus 24±9 min (mean difference -6, 95% CI -10 to -3), corresponding to -27.6% (-41.1 to -14.1; p<0.001), but similar Borg dyspnoea scale. At altitude, P aO2 was significantly lower (7.3±0.8 versus 10.4±1.5 kPa; mean difference -3.2 kPa, 95% CI -3.6 to -2.8 kPa), whereas heart rate and tricuspid regurgitation pressure gradient (TRPG) were higher (86±18 versus 71±16 beats·min-1, mean difference 15 beats·min-1, 95% CI 7 to 23 beats·min-1) and 56±25 versus 40±15 mmHg (mean difference 17 mmHg, 95% CI 9 to 24 mmHg), respectively, and remained so until end-exercise (all p<0.001). The TRPG/cardiac output slope during exercise was similar at both altitudes. Overall, three (11%) out of 28 patients received oxygen at 2500 m due to hypoxaemia. CONCLUSION: This randomised crossover study showed that the majority of PH patients tolerate a day-trip to 2500 m well. At high versus low altitude, the mean exercise time was reduced, albeit with a high interindividual variability, and pulmonary artery pressure at rest and during exercise increased, but pressure-flow slope and dyspnoea were unchanged.

6.
Chest ; 159(2): 757-771, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32918899

RESUMO

BACKGROUND: Many patients with pulmonary arterial or chronic thromboembolic pulmonary hypertension (PH) wish to travel to altitude or by airplane, but their risk of hypoxia-related adverse health effects is insufficiently explored. RESEARCH QUESTION: How does hypoxia, compared with normoxia, affect constant work-rate exercise test (CWRET) time in patients with PH, and which physiologic mechanisms are involved? STUDY DESIGN AND METHODS: Stable patients with PH with resting Pao2 ≥ 7.3 kPa underwent symptom-limited cycling CWRET (60% of maximal workload) while breathing normobaric hypoxic air (hypoxia; Fio2, 15%) and ambient air (normoxia; Fio2, 21%) in a randomized cross-over design. Borg dyspnea score, arterial blood gases, tricuspid regurgitation pressure gradient, and mean pulmonary artery pressure/cardiac output ratio (mean PAP/CO) by echocardiography were assessed before and during end-CWRET. RESULTS: Twenty-eight patients (13 women) were included: median (quartiles) age, 66 (54; 74) years; mean pulmonary artery pressure, 41 (29; 49) mm Hg; and pulmonary vascular resistance, 5.4 (4; 8) Wood units. Under normoxia and hypoxia, CWRET times were 16.9 (8.0; 30.0) and 6.7 (5.5; 27.3) min, respectively, with a median difference (95% CI) of -0.7 (-3.1 to 0.0) min corresponding to -7 (-32 to 0.0)% (P = .006). At end-exercise in normoxia and hypoxia, respectively, median values and differences in corresponding variables were as follows: Pao2: 8.0 vs 6.4, -1.7 (-2.7 to -1.1) kPa; arterial oxygen content: 19.2 vs 17.2, -1.7 (-3 to -0.1) mL/dL; Paco2: 4.7 vs 4.3, -0.3 (-0.5 to -0.1) kPa; lactate: 3.7 vs 3.7, 0.9 (0.1 to 1.6) mM (P < .05 all differences). Values for Borg scale score: 7 vs 6, 0.5 (0 to 1); tricuspid pressure gradient: 89 vs 77, -3 (-9 to 16) mm Hg; and mean PAP/CO: 4.5 vs 3.3, 0.3 (-0.8 to 1.4) Wood units remained unchanged. In multivariable regression, baseline pulmonary vascular resistance was the sole predictor of hypoxia-induced change in CWRET time. INTERPRETATION: In patients with PH, short-time exposure to hypoxia was well tolerated but reduced CWRET time compared with normoxia in association with hypoxemia, lactacidemia, and hypocapnia. Because pulmonary hemodynamics and dyspnea at end-exercise remained unaltered, the hypoxia-induced exercise limitation may be due to a reduced oxygen delivery causing peripheral tissue hypoxia, augmented lactic acid loading and hyperventilation. TRIAL REGISTRY: ClinicalTrials.gov; No.: NCT03592927; URL: www.clinicaltrials.gov.


Assuntos
Exercício Físico/fisiologia , Hipertensão Pulmonar/fisiopatologia , Hipóxia/fisiopatologia , Idoso , Estudos Cross-Over , Teste de Esforço , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Método Simples-Cego , Suíça
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...